REINFORCING FIBERGLASS MESH WITH A MULTI-FUNCTION STRIP SYSTEM

CSI Sections:
09 22 36 Lath

1.0 RECOGNITION

SpiderLath Reinforcing Fiberglass Mesh has been evaluated for use as glass-fiber lath in cementitious exterior wall coatings, cement stucco, and precast stone veneer cladding systems.

The physical, structural, durability and combustibility properties of the lath have been evaluated for compliance with the following codes:

- 2018, 2015 and 2012 International Residential Code® (IRC)

2.0 LIMITATIONS

Use of the SpiderLath Reinforcing Fiberglass Mesh recognized in this report is subject to the following limitations:

2.1 Use of the SpiderLath Reinforcing Fiberglass Mesh to support precast stone veneer shall be limited to products recognized in a current report evaluated in accordance with ACS1, and its use shall be acceptable to the manufacturer of the precast stone veneer system.

2.2 The maximum weight of the stone veneer shall be 15 psf (73 kg/m²).

2.3 Use of SpiderLath mesh shall be limited to Type V, non-fire-resistance-rated construction.

2.4 Use of SpiderLath mesh as a structural backing material in lateral force resisting systems is outside the scope of this report.

2.5 SpiderLath mesh shall be stored in a dry location.

2.6 The reinforcing fiberglass mesh recognized in this report is produced by Spiderlath in Smackover, Arkansas.

3.0 PRODUCT USE

Use of SpiderLath Reinforcing Fiberglass Mesh shall comply with the applicable codes, the manufacturer’s installation instructions, and this report. Where conflicts occur, the most restrictive shall govern.

3.1 General: SpiderLath mesh is designed to be an alternative to metal wire mesh lath used in cementitious exterior vertical wall coatings recognized in current evaluation reports, or exterior cement plaster (stucco) complying with Chapter 25 of the IBC or Chapter 7 in the IRC. This report also covers the use of glass-fiber lath intended to support precast stone veneer.

3.2 Installation

SpiderLath Reinforcing Fiberglass Mesh shall be installed on vertical walls with the Multi-Function Strip System spacer strips against the substrate. The resulting void shall be filled with cement plaster or mortar scratch coat. The lath shall be installed with a minimum 2-inch (51 mm) overlap at horizontal and vertical edges and shall be applied flat and stretched tight against the substrate. Figure 1 of this report provides stucco veneer installation details and Figure 2 of this report includes standard stucco installation details.

The fasteners shall be installed only into the Multi-Function Strip System to compress and re-seal the penetrations made by the fasteners in the water-resistant barrier, to prevent moisture damage to the substrate.

3.3 Fasteners

3.3.1 Wood Studs

The lath shall be fastened to each of the wall studs at 6 inches (152 mm) on center vertically in accordance with the minimum requirements of Section 7.10 of ASTM C1063 or 2018 IRC Section R703.7.1 and 2015 and 2012 IRC Section R703.6.1, as applicable. Fasteners shall be a minimum No. 16 gage staples, with a minimum ¾-inch (19 mm) crown. All fasteners shall be coated or galvanized steel and shall be of sufficient length to penetrate into the stud a minimum of ¾ inch (19 mm).

3.3.2 Metal Studs

For metal surfaces and metal stud applications, a 2-inch (51 mm) washer and a No. 6 Type S self-tapping screw of sufficient length to penetrate at least ¾ inch (9.5 mm) beyond the metal surfaces shall be used.
3.4 Mortar for Use with Stone Veneer

Masonry mortar shall comply with 2018 and 2015 IBC Section 2103.2, 2012 IBC Section 2103.9, 2018 IRC Section 606.2.8, 2015 IRC Section R606.2.7 and 2012 IRC Section 607.1, as applicable.

3.5 Applying Scratch Coat

3.5.1 Apply mortar scratch coat with sufficient pressure to force mortar through openings to completely fill area between lath and substrate. Apply a minimum of ¼ inch (6.3 mm) of mortar to fill area between lath and substrate made by furring strip system and a minimum of ¼ inch (6.3 mm) of mortar to the outside of the lath.

3.5.2 The surface of the mortar scratch coat shall be scarified in a horizontal direction to increase the surface bonding properties when the stone veneer unit is applied.

3.5.3 The mortar scratch coat shall be left to cure to a point where the stone veneer unit will adequately adhere to the scratch coat. Cure time varies with ambient temperature and humidity.

4.0 PRODUCT DESCRIPTION

SpiderLath Reinforcing Fiberglass Mesh is an Alkali resistant (AR) fiberglass mesh containing 14.5 percent Zirconium Dioxide (ZrO2). SpiderLath rolls come with ¼-inch-thick (6.3 mm) or ⅜-inch-thick (9.5 mm) Multi-Function Strip System fastener strips. The fastener strips are made of a closed cell foam. The SpiderLath rolls are 4 feet wide by 75 feet long (1.2 m x 22.9 m) and weigh approximately 21 pounds (9.5 kg). The mesh is a three-dimensional Leno weave with a weight of 8.82 oz/yd² (300 g/m²), opening size of 0.25 in² (161 mm²), and has a semi-rigid coating. The fiberglass mesh is attached to the foam strip material using a heat and pressure process.

5.0 IDENTIFICATION

The product is identified with a label identifying the company name, the product name, the size of the fastener strip, roll dimensions, and IAPMO-ES report number (ER-141). Either UES Mark of Conformity may be used as shown below.

6.0 SUBSTANTIATING DATA

Data in accordance with ICC Acceptance Criteria for Glass Fiber Lath Used in Cementitious Exterior Wall Coatings or Exterior Cement Plaster (Stucco), AC 275, dated April 2011, and editorially revised August 2013. Test results are from laboratories in compliance with ISO/IEC 17025.

7.0 STATEMENT OF RECOGNITION

This evaluation report describes the results of research carried out by IAPMO Uniform Evaluation Service on SpiderLath reinforcing fiberglass mesh to assess its conformance to the codes shown in Section 1.0 of this report and documents the product’s certification. Products are manufactured at locations noted in Section 2.6 of this report under a quality control program with periodic inspections under the supervision of IAPMO UES.

Brian Gerber, P.E., S.E.
Vice President, Technical Operations
Uniform Evaluation Service

Richard Beck, PE, CBO, MCP
Vice President, Uniform Evaluation Service

GP Russ Chaney
CEO, The IAPMO Group

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org
FIGURE 1
STONE VENEER INSTALLATION DETAILS
FIGURE 2
STANDARD STUCCO INSTALLATION DETAILS
FLORIDA SUPPLEMENT

SPIDERLATH
130 WELSCO RD.
SMACKOVER, AR 71762
(870) 725-3902
www.spiderlath.com

REINFORCING FIBERGLASS MESH WITH A MULTI-FUNCTION STRIP SYSTEM

CSI Section:
09 22 36 Lathing

1.0 RECOGNITION

The SpiderLath fiberglass mesh with a multi-function strip system evaluated in IAPMO UES ER-141 is a satisfactory alternative to the lath prescribed in the following codes and regulations:

- 2017 and 2014 Florida Building Code, Building (FBC, Building)
- 2017 and 2014 Florida Building Code, Residential (FBC, Residential)

2.0 LIMITATIONS

SpiderLath fiberglass mesh described in IAPMO UES ER-141 complies with the 2017 and 2014 FBC, Building and the 2017 and 2014 FBC, Residential, subject to the following limitation:

Evaluation to the high-velocity hurricane zone provisions of the FBC, Building and the FBC, Residential is beyond the scope of this report.

3.0 QUALITY ASSURANCE

Verification has been provided that a product quality assurance entity approved by the Florida Building Commission has audited the manufacturer's quality assurance program and audits the production quality, in accordance with Section (5)(d) of Florida Rule 61G20-3.008.

For additional information about this evaluation report please visit www.uniform-es.org or email us at info@uniform-es.org